Sains Malaysiana 53(2)(2024): 347-358
http://doi.org/10.17576/jsm-2024-5302-09
Advance
Heteroatom Dopants Nitrogen, Boron, Sulphur, and Phosphorus on Carbon Dots
towards Histamine Detection in Fish Sample
(Nitrogen Dopan Heteroatom, Boron, Sulfur dan Fosforus Termaju pada Titik Karbon ke arah Pengesanan Histamin dalam Sampel Ikan)
MOCHAMAD ZAKKI FAHMI1,2,*, SITI
FEBTRIA ASRINI SUGITO1, NADIA AULIA HANIFAH1,
UMMI LATHIFAH NUR’AINI1, BAMBANG PURWANTO3 & LEE HWEI
VOON4
1Department of Chemistry, Universitas Airlangga, Surabaya
60115, Indonesia
2Supramodification
Nano-micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
3Department of Physiology, Universitas Airlangga, Surabaya
60115, Indonesia
4Nanotechnology Catalysis
Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
Received: 7
August 2023/Accepted: 23 January 2024
Abstract
This
study introduces heteroatom-doped carbon dots (CDs), namely boron-sulphur
(BS-CDs) and nitrogen-phosphorus (NP-CDs), highlighting their potential as
optical materials for sensitive histamine detection in sensor applications.
Synthesized through facile pyrolysis of citric acid cores with non-metal
dopants, resulting in confirmed graphene-like structures and uniform spheres
with crystal diameters below 3 nm of BS-CDs and NP-CDs. The optical properties
exhibited blue fluorescence, with emission wavelengths of 280 nm (QY 0.08%) and
420 nm (QY 1.72%) for BS-CDs and NP-CDs, respectively. Despite declined
fluorescence intensities due to interfering components, both CDs demonstrated
low selectivity for histamine, which increased the intensity in its presence.
Notably, BS-CDs exhibited superior detectability of histamine at a low
concentration of 26.3 ppm compared to 42.8 ppm for NP-CDs. Cytotoxicity studies
indicated low toxicity for both CDs, positioning them as promising candidates
for further development as histamine detectors
Keywords:
Boron; carbon dots; co-dopants; histamine detector; nitrogen; phosphorus;
sulphur
Abstrak
Kajian ini memperkenalkan titik karbon terdop heteroatom (CD), iaitu boron-sulfur (BS-CD) dan nitrogen-fosforus (NP-CD), menonjolkan potensinya sebagai bahan optik untuk pengesanan histamin sensitif dalam aplikasi sensor. Disintesis melalui pirolisis mudah teras asid sitrik dengan dopan bukan logam, menghasilkan struktur seperti grafin yang disahkan dan sfera seragam dengan diameter kristal di bawah 3 nm BS-CD dan NP-CD. Sifat optik mengeluarkan pendarfluor biru, dengan panjang gelombang pelepasan 280 nm (QY
0.08%) dan 420 nm (QY 1.72%) masing-masing untuk BS-CD dan NP-CD. Walaupun keamatan pendarfluor menurun disebabkan oleh komponen yang mengganggu, kedua-dua CD menunjukkan selektiviti rendah untuk histamin, yang meningkatkan keamatan dengan kehadirannya. Paling terutama, BS-CD menunjukkan pengesanan histamin yang unggul pada kepekatan rendah 26.3 ppm berbanding 42.8 ppm untuk NP-CD. Kajian sitotoksisiti menunjukkan ketoksikan yang rendah untuk kedua-dua CD, meletakkannya sebagai calon yang berpotensi untuk pembangunan selanjutnya sebagai pengesan histamin.
Kata kunci: Boron;
Co-dopan; fosforus;
nitrogen; pengesan histamin; sulfur; titik karbon
REFERENCES
Arole, V.M. & Munde, S.V. 2014. Fabrication of nanomaterials by
top-down and bottom-up approaches-an overview. J. Mater. Sci. 1: 89-93.
Aswandi Wibrianto, Siti Q. Khairunisa, Satya C.W. Sakti,
Yatim L. Ni'Mah, Bambang Purwanto & Mochamad Z. Fahmi. 2021. Comparison of
the effects of synthesis methods of B, N, S, and P-doped carbon dots with high
photoluminescence properties on HeLa tumor cells. RSC Advances 11(2): 1098-1108.
Atchudan, R., Jebakumar Immanuel Edison, T.N., Perumal, S.,
Karthik, N., Karthikeyan, D., Shanmugam, M. & Lee, Y.R. 2018. Concurrent
synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@nitrogen-doped
carbon sheets for photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology
A: Chemistry 350: 75-85.
Baker, S.N. & Baker, G.A. 2010. Luminescent carbon
nanodots: Emergent nanolights. Angewandte
Chemie International Edition 49(38): 6726-6744.
Bi, J., Tian, C., Zhang, G-L., Hao, H. & Hou, H-M. 2020.
Detection of histamine based on gold nanoparticles with dual sensor system of
colorimetric and fluorescence. Foods 9(3): 316.
Bourlinos, A.B., Trivizas, G., Karakassides, M.A., Baikousi,
M., Kouloumpis, A., Gournis, D., Bakandritsos, A., Hola, K., Kozak, O., Zboril,
R., Papagiannouli, I., Aloukos, P. & Couris, S. 2015. Green and simple
route toward boron doped carbon dots with significantly enhanced non-linear
optical properties. Carbon 83:
173-179.
Bunaciu, A.A., UdriŞTioiu, E.G. & Aboul-Enein, H.Y.
2015. X-ray diffraction: Instrumentation and applications. Critical Reviews in Analytical Chemistry 45(4): 289-299.
Chatterjee, M., Nath, P., Kadian, S., Kumar, A., Kumar, V.,
Roy, P., Manik, G. & Satapathi, S. 2022. Highly sensitive and selective
detection of dopamine with boron and sulfur co-doped graphene quantum dots. Scientific Reports 12(1): 9061.
Colthup, N. 2012. Introduction
to Infrared and Raman Spectroscopy. Elsevier.
De Oliveira, R.R.L., Albuquerque, D.A.C., Cruz, T.G.S.,
Yamaji, F.M. & Leite, F.L. 2012. Measurement of the nanoscale roughness by
atomic force microscopy: Basic principles and applications. In Atomic Force Microscopy-Imaging, Measuring
and Manipulating Surfaces at the Atomic Scale, edited by Bellitto, V. InTech.
http://www.intechopen.com/books/atomic-force-microscopyimaging-measuring-and-manipulating-surfaces-at-the-atomic-scale/measurement-of-the-nanoscaleroughness-by-atomic-force-microscopy-basic-principles-and-applications
DeBeer, J., Bell, J.W., Nolte, F., Arcieri, J. & Correa,
G. 2021. Histamine limits by country: A survey and review. Journal of Food Protection 84(9): 1610-1628.
Fahmi, M.Z., Sholihah, N.F., Wibrianto, A., Sakti, S.C.W.,
Firdaus, F. & Chang, J-Y. 2021. Simple and fast design of folic acid-based
carbon dots as theranostic agent and its drug release aspect. Materials Chemistry and Physics 267:
124596.
Fahmi, M.Z., Prasetya, R.A., Dzikri, M.F., Sakti, S.C.W.
& Yuliarto, B. 2020. MnFe2O4 nanoparticles/cellulose
acetate composite nanofiber for controllable release of naproxen. Materials Chemistry and Physics 250:
123055.
Gaddam, R.R., Vasudevan, D., Narayan, R. & Raju, K. 2014.
Controllable synthesis of biosourced blue-green fluorescent carbon dots from
camphor for the detection of heavy metal ions in water. RSC Advances 4(100): 57137-57143.
Gong, X., Liu, Y., Yang, Z., Shuang, S., Zhang, Z. &
Dong, C. 2017. An “on-off-on” fluorescent nanoprobe for recognition of chromium
(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum
dot. Analytica Chimica Acta 968:
85-96.
Gunjal, D.B., Nille, O.S., Naik, V.M., Shejwal, R.V.,
Kolekar, G.B. & Gore, A.H. 2023. Chapter 14 - Heteroatom/metal ion-doped
carbon dots for sensing applications. In Carbon
Dots in Analytical Chemistry, edited by Kailasa, S.K. & Hussain, C.M.
Elsevier. pp. 181-197.
Herman, B. 2020. Fluorescence
Microscopy. Garland Science.
Hola, K., Zhang, Y., Wang, Y., Giannelis, E.P., Zboril, R.
& Rogach, A.L. 2014. Carbon dots - Emerging light emitters for bioimaging,
cancer therapy and optoelectronics. Nano
Today 9(5): 590-603.
Huang, C., Wang, S., Zhao, W., Zong, C., Liang, A., Zhang, Q.
& Liu, X. 2017. Visual and photometric determination of histamine using
unmodified gold nanoparticles. Microchimica
Acta 184(7): 2249-2254.
Kim, Y. & Chang, J.Y. 2016. Fabrication of a fluorescent
sensor by organogelation: CdSe/ZnS quantum dots embedded molecularly imprinted
organogel nanofibers. Sensors and
Actuators B: Chemical 234: 122-129.
Li, L., Yu, B. & You, T. 2015. Nitrogen and sulfur
co-doped carbon dots for highly selective and sensitive detection of Hg (II)
ions. Biosensors and Bioelectronics 74: 263-269.
Liu, H., Ding, J., Zhang, K. & Ding, L. 2019.
Construction of biomass carbon dots based fluorescence sensors and their
applications in chemical and biological analysis. TrAC Trends in Analytical Chemistry 118: 315-337.
Mandawala, C., Chebbi, I., Durand-Dubief, M., Le Fèvre, R.,
Hamdous, Y., Guyot, F. & Alphandéry, E. 2017. Biocompatible and stable
magnetosome minerals coated with poly-l-lysine, citric acid, oleic acid, and
carboxy-methyl-dextran for application in the magnetic hyperthermia treatment
of tumors. Journal of Materials Chemistry
B 5(36): 7644-7660.
Mirsadoughi, E., Nemati, F., Oroojalian, F. & Hosseini,
M. 2022. Turn –on FRET-based cysteine sensor by sulfur-doped carbon dots and Au
nanoparticles decorated WS2 nanosheet. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy 272: 120903.
Munusamy, S., Mandlimath, T.R., Swetha, P., Al-Sehemi, A.G.,
Pannipara, M., Koppala, S., Shanmugam, P., Boonyuen, S., Pothu, R. &
Boddula, R. 2023. Nitrogen-doped carbon dots: Recent developments in its
fluorescent sensor applications. Environmental
Research 231: 116046.
Nurul Ain Huzaifah, Nordin Sabli, Kok Kuan Ying, Nur Ubaidah
Saidin & Hikmat S. Hilal. 2020. Enhancement of characteristics of
nitrogen-doped graphene composite materials prepared by ball milling of
graphite with melamine: Effect of milling speed and material ratios. Sains Malaysiana 49(7): 1745-1754.
Nur Fatin Nabilah Mohd Sahardi, Faizul Jaafar, Siti Nor
Asyikin Zakaria, Jen Kit Tan, Mariam Firdhaus Mad Nordin & Suzana Makpol.
2021. Comparison of the antioxidant activity of Malaysian ginger (Zingiber
officinale Roscoe) extracts with that of selected natural products and its
effect on the viability of myoblast cells in culture. Sains Malaysiana 50 (5): 1445-1456.
Nur 'Izzah binti Ahmad Juanda, Noorashikin Md Saleh, Nor
Yuliana Yuhana, Saliza Asman & Farhanini Yusoff. 2023. Analysis of
methylphenol concentration in Selangor Rivers, Malaysia using solid phase
extraction technique coupled with UV-Vis spectroscopy. Sains Malaysiana 52(5): 1453-1468.
Preethi, M., Viswanathan, C. & Ponpandian, N. 2022.
Fluorescence quenching mechanism of P-doped carbon quantum dots as fluorescent
sensor for Cu2+ ions. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 653: 129942.
Qu, Y., Ding, J., Fu, H., Chen, H. & Peng, J. 2021.
Investigation on tunable electronic properties of semiconducting graphene
induced by boron and sulfur doping. Applied
Surface Science 542: 148763.
Schneider, J., Reckmeier, C.J., Xiong, Y., von Seckendorff,
M., Susha, A.S., Kasák, P. & Rogach, A.L. 2017. Molecular fluorescence in
citric acid-based carbon dots. The
Journal of Physical Chemistry C 121(3): 2014-2022.
Singh, A.K., Singh, V.K., Singh, M., Singh, P., Khadim, S.R.,
Singh, U., Koch, B., Hasan, S.H. & Asthana, R.K. 2019. One pot hydrothermal
synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell
imaging. Journal of Photochemistry and
Photobiology A: Chemistry 376: 63-72.
Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., Teng,
K.S., Luk, C.M., Zeng, S. & Hao, J. 2012. Deep ultraviolet photoluminescence
of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):
5102-5110.
Ternero-Hidalgo, J.J., Rosas, J.M., Palomo, J.,
Valero-Romero, M.J., Rodríguez-Mirasol, J. & Cordero, T. 2016.
Functionalization of activated carbons by HNO3 treatment: Influence
of phosphorus surface groups. Carbon 101: 409-419.
Toloza, C.A.T., Khan, S., Silva, R.L.D., Romani, E.C.,
Larrude, D.G., Louro, S.R.W., Freire Júnior, F.L. & Aucelio, R.Q. 2017.
Photoluminescence suppression effect caused by histamine on
amino-functionalized graphene quantum dots with the mediation of Fe3+,
Cu2+, Eu3+: Application in the analysis of spoiled tuna
fish. Microchemical Journal 133:
448-459.
Wang, B., Cai, H., Waterhouse, G.I.N., Qu, X., Yang, B. &
Lu, S. 2022. Carbon dots in bioimaging, biosensing and therapeutics: A
comprehensive review. Small Science 2(6): 2200012.
Wang, F., Hao, Q., Zhang, Y., Xu, Y. & Lei, W. 2016.
Fluorescence quenchometric method for determination of ferric ion using
boron-doped carbon dots. Microchimica
Acta 183: 273-279.
Wang, Y. & Hu, A. 2014. Carbon quantum dots: Synthesis,
properties and applications. Journal of
Materials Chemistry C 2(34): 6921-6939.
Xu, Q., Liu, Y., Gao, C., Wei, J., Zhou, H., Chen, Y., Dong,
C., Sreeprasad, T.S., Li, N. & Xia, Z. 2015. Synthesis, mechanistic
investigation, and application of photoluminescent sulfur and nitrogen co-doped
carbon dots. Journal of Materials
Chemistry C 3(38): 9885-9893.
Yadav, S., Nair, S.S., Sai, V.V.R. & Satija, J. 2019.
Nanomaterials based optical and electrochemical sensing of histamine: Progress
and perspectives. Food Research
International 119: 99-109.
Zang, Z., Zeng, X., Wang, M., Hu, W., Liu, C. & Tang, X.
2017. Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO)
nanocomposites and their application in-vivo bioimaging. Sensors and Actuators B: Chemical 252:
1179-1186.
Zhang, D., Wang, Y., Xie, J., Geng, W. & Liu, H. 2020.
Ionic-liquid-stabilized fluorescent probe based on S-doped carbon dot-embedded
covalent-organic frameworks for determination of histamine. Microchimica Acta 187: 1-9.
Zhou, M., Zhou, Z., Gong, A., Zhang, Y. & Li, Q. 2015.
Synthesis of highly photoluminescent carbon dots via citric acid and Tris for
iron (III) ions sensors and bioimaging. Talanta 143: 107-113.
Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y. &
Zhou, X. 2017. The quenching of the fluorescence of carbon dots: A review on
mechanisms and applications. Microchimica
Acta 184: 1899-1914.
Zuo, P., Lu, X., Sun, Z., Guo, Y. & He, H. 2016. A review
on syntheses, properties, characterization and bioanalytical applications of
fluorescent carbon dots. Microchimica
Acta 183: 519-542.
*Corresponding author; email: m.zakki.fahmi@fst.unair.ac.id
|