Sains Malaysiana 53(2)(2024): 347-358

http://doi.org/10.17576/jsm-2024-5302-09

 

Advance Heteroatom Dopants Nitrogen, Boron, Sulphur, and Phosphorus on Carbon Dots towards Histamine Detection in Fish Sample

(Nitrogen Dopan Heteroatom, Boron, Sulfur dan Fosforus Termaju pada Titik Karbon ke arah Pengesanan Histamin dalam Sampel Ikan)

 

MOCHAMAD ZAKKI FAHMI1,2,*, SITI FEBTRIA ASRINI SUGITO1, NADIA AULIA HANIFAH1, UMMI LATHIFAH NUR’AINI1, BAMBANG PURWANTO3 & LEE HWEI VOON4

 

1Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia

2Supramodification Nano-micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia

3Department of Physiology, Universitas Airlangga, Surabaya 60115, Indonesia

4Nanotechnology Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 7 August 2023/Accepted: 23 January 2024

 

Abstract

This study introduces heteroatom-doped carbon dots (CDs), namely boron-sulphur (BS-CDs) and nitrogen-phosphorus (NP-CDs), highlighting their potential as optical materials for sensitive histamine detection in sensor applications. Synthesized through facile pyrolysis of citric acid cores with non-metal dopants, resulting in confirmed graphene-like structures and uniform spheres with crystal diameters below 3 nm of BS-CDs and NP-CDs. The optical properties exhibited blue fluorescence, with emission wavelengths of 280 nm (QY 0.08%) and 420 nm (QY 1.72%) for BS-CDs and NP-CDs, respectively. Despite declined fluorescence intensities due to interfering components, both CDs demonstrated low selectivity for histamine, which increased the intensity in its presence. Notably, BS-CDs exhibited superior detectability of histamine at a low concentration of 26.3 ppm compared to 42.8 ppm for NP-CDs. Cytotoxicity studies indicated low toxicity for both CDs, positioning them as promising candidates for further development as histamine detectors

 

Keywords: Boron; carbon dots; co-dopants; histamine detector; nitrogen; phosphorus; sulphur

 

Abstrak

Kajian ini memperkenalkan titik karbon terdop heteroatom (CD), iaitu boron-sulfur (BS-CD) dan nitrogen-fosforus (NP-CD), menonjolkan potensinya sebagai bahan optik untuk pengesanan histamin sensitif dalam aplikasi sensor. Disintesis melalui pirolisis mudah teras asid sitrik dengan dopan bukan logam, menghasilkan struktur seperti grafin yang disahkan dan sfera seragam dengan diameter kristal di bawah 3 nm BS-CD dan NP-CD. Sifat optik mengeluarkan pendarfluor biru, dengan panjang gelombang pelepasan 280 nm (QY 0.08%) dan 420 nm (QY 1.72%) masing-masing untuk BS-CD dan NP-CD. Walaupun keamatan pendarfluor menurun disebabkan oleh komponen yang mengganggu, kedua-dua CD menunjukkan selektiviti rendah untuk histamin, yang meningkatkan keamatan dengan kehadirannya. Paling terutama, BS-CD menunjukkan pengesanan histamin yang unggul pada kepekatan rendah 26.3 ppm berbanding 42.8 ppm untuk NP-CD. Kajian sitotoksisiti menunjukkan ketoksikan yang rendah untuk kedua-dua CD, meletakkannya sebagai calon yang berpotensi untuk pembangunan selanjutnya sebagai pengesan histamin.

 

Kata kunci: Boron; Co-dopan; fosforus; nitrogen; pengesan histamin; sulfur; titik karbon

 

REFERENCES

Arole, V.M. & Munde, S.V. 2014. Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J. Mater. Sci. 1: 89-93.

Aswandi Wibrianto, Siti Q. Khairunisa, Satya C.W. Sakti, Yatim L. Ni'Mah, Bambang Purwanto & Mochamad Z. Fahmi. 2021. Comparison of the effects of synthesis methods of B, N, S, and P-doped carbon dots with high photoluminescence properties on HeLa tumor cells. RSC Advances 11(2): 1098-1108.

Atchudan, R., Jebakumar Immanuel Edison, T.N., Perumal, S., Karthik, N., Karthikeyan, D., Shanmugam, M. & Lee, Y.R. 2018. Concurrent synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@nitrogen-doped carbon sheets for photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology A: Chemistry 350: 75-85.

Baker, S.N. & Baker, G.A. 2010. Luminescent carbon nanodots: Emergent nanolights. Angewandte Chemie International Edition 49(38): 6726-6744.

Bi, J., Tian, C., Zhang, G-L., Hao, H. & Hou, H-M. 2020. Detection of histamine based on gold nanoparticles with dual sensor system of colorimetric and fluorescence. Foods 9(3): 316.

Bourlinos, A.B., Trivizas, G., Karakassides, M.A., Baikousi, M., Kouloumpis, A., Gournis, D., Bakandritsos, A., Hola, K., Kozak, O., Zboril, R., Papagiannouli, I., Aloukos, P. & Couris, S. 2015. Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83: 173-179.

Bunaciu, A.A., UdriŞTioiu, E.G. & Aboul-Enein, H.Y. 2015. X-ray diffraction: Instrumentation and applications. Critical Reviews in Analytical Chemistry 45(4): 289-299.

Chatterjee, M., Nath, P., Kadian, S., Kumar, A., Kumar, V., Roy, P., Manik, G. & Satapathi, S. 2022. Highly sensitive and selective detection of dopamine with boron and sulfur co-doped graphene quantum dots. Scientific Reports 12(1): 9061.

Colthup, N. 2012. Introduction to Infrared and Raman Spectroscopy. Elsevier.

De Oliveira, R.R.L., Albuquerque, D.A.C., Cruz, T.G.S., Yamaji, F.M. & Leite, F.L. 2012. Measurement of the nanoscale roughness by atomic force microscopy: Basic principles and applications. In Atomic Force Microscopy-Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, edited by Bellitto, V. InTech. http://www.intechopen.com/books/atomic-force-microscopyimaging-measuring-and-manipulating-surfaces-at-the-atomic-scale/measurement-of-the-nanoscaleroughness-by-atomic-force-microscopy-basic-principles-and-applications

DeBeer, J., Bell, J.W., Nolte, F., Arcieri, J. & Correa, G. 2021. Histamine limits by country: A survey and review. Journal of Food Protection 84(9): 1610-1628.

Fahmi, M.Z., Sholihah, N.F., Wibrianto, A., Sakti, S.C.W., Firdaus, F. & Chang, J-Y. 2021. Simple and fast design of folic acid-based carbon dots as theranostic agent and its drug release aspect. Materials Chemistry and Physics 267: 124596.

Fahmi, M.Z., Prasetya, R.A., Dzikri, M.F., Sakti, S.C.W. & Yuliarto, B. 2020. MnFe2O4 nanoparticles/cellulose acetate composite nanofiber for controllable release of naproxen. Materials Chemistry and Physics 250: 123055.

Gaddam, R.R., Vasudevan, D., Narayan, R. & Raju, K. 2014. Controllable synthesis of biosourced blue-green fluorescent carbon dots from camphor for the detection of heavy metal ions in water. RSC Advances 4(100): 57137-57143.

Gong, X., Liu, Y., Yang, Z., Shuang, S., Zhang, Z. & Dong, C. 2017. An “on-off-on” fluorescent nanoprobe for recognition of chromium (VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Analytica Chimica Acta 968: 85-96.

Gunjal, D.B., Nille, O.S., Naik, V.M., Shejwal, R.V., Kolekar, G.B. & Gore, A.H. 2023. Chapter 14 - Heteroatom/metal ion-doped carbon dots for sensing applications. In Carbon Dots in Analytical Chemistry, edited by Kailasa, S.K. & Hussain, C.M. Elsevier. pp. 181-197.

Herman, B. 2020. Fluorescence Microscopy. Garland Science.

Hola, K., Zhang, Y., Wang, Y., Giannelis, E.P., Zboril, R. & Rogach, A.L. 2014. Carbon dots - Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9(5): 590-603.

Huang, C., Wang, S., Zhao, W., Zong, C., Liang, A., Zhang, Q. & Liu, X. 2017. Visual and photometric determination of histamine using unmodified gold nanoparticles. Microchimica Acta 184(7): 2249-2254.

Kim, Y. & Chang, J.Y. 2016. Fabrication of a fluorescent sensor by organogelation: CdSe/ZnS quantum dots embedded molecularly imprinted organogel nanofibers. Sensors and Actuators B: Chemical 234: 122-129.

Li, L., Yu, B. & You, T. 2015. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions. Biosensors and Bioelectronics 74: 263-269.

Liu, H., Ding, J., Zhang, K. & Ding, L. 2019. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC Trends in Analytical Chemistry 118: 315-337.

Mandawala, C., Chebbi, I., Durand-Dubief, M., Le Fèvre, R., Hamdous, Y., Guyot, F. & Alphandéry, E. 2017. Biocompatible and stable magnetosome minerals coated with poly-l-lysine, citric acid, oleic acid, and carboxy-methyl-dextran for application in the magnetic hyperthermia treatment of tumors. Journal of Materials Chemistry B 5(36): 7644-7660.

Mirsadoughi, E., Nemati, F., Oroojalian, F. & Hosseini, M. 2022. Turn –on FRET-based cysteine sensor by sulfur-doped carbon dots and Au nanoparticles decorated WS2 nanosheet. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 272: 120903.

Munusamy, S., Mandlimath, T.R., Swetha, P., Al-Sehemi, A.G., Pannipara, M., Koppala, S., Shanmugam, P., Boonyuen, S., Pothu, R. & Boddula, R. 2023. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. Environmental Research 231: 116046.

Nurul Ain Huzaifah, Nordin Sabli, Kok Kuan Ying, Nur Ubaidah Saidin & Hikmat S. Hilal. 2020. Enhancement of characteristics of nitrogen-doped graphene composite materials prepared by ball milling of graphite with melamine: Effect of milling speed and material ratios. Sains Malaysiana 49(7): 1745-1754.

Nur Fatin Nabilah Mohd Sahardi, Faizul Jaafar, Siti Nor Asyikin Zakaria, Jen Kit Tan, Mariam Firdhaus Mad Nordin & Suzana Makpol. 2021. Comparison of the antioxidant activity of Malaysian ginger (Zingiber officinale Roscoe) extracts with that of selected natural products and its effect on the viability of myoblast cells in culture. Sains Malaysiana 50 (5): 1445-1456.

Nur 'Izzah binti Ahmad Juanda, Noorashikin Md Saleh, Nor Yuliana Yuhana, Saliza Asman & Farhanini Yusoff. 2023. Analysis of methylphenol concentration in Selangor Rivers, Malaysia using solid phase extraction technique coupled with UV-Vis spectroscopy. Sains Malaysiana 52(5): 1453-1468.

Preethi, M., Viswanathan, C. & Ponpandian, N. 2022. Fluorescence quenching mechanism of P-doped carbon quantum dots as fluorescent sensor for Cu2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 653: 129942.

Qu, Y., Ding, J., Fu, H., Chen, H. & Peng, J. 2021. Investigation on tunable electronic properties of semiconducting graphene induced by boron and sulfur doping. Applied Surface Science 542: 148763.

Schneider, J., Reckmeier, C.J., Xiong, Y., von Seckendorff, M., Susha, A.S., Kasák, P. & Rogach, A.L. 2017. Molecular fluorescence in citric acid-based carbon dots. The Journal of Physical Chemistry C 121(3): 2014-2022.

Singh, A.K., Singh, V.K., Singh, M., Singh, P., Khadim, S.R., Singh, U., Koch, B., Hasan, S.H. & Asthana, R.K. 2019. One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. Journal of Photochemistry and Photobiology A: Chemistry 376: 63-72.

Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., Teng, K.S., Luk, C.M., Zeng, S. & Hao, J. 2012. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6): 5102-5110.

Ternero-Hidalgo, J.J., Rosas, J.M., Palomo, J., Valero-Romero, M.J., Rodríguez-Mirasol, J. & Cordero, T. 2016. Functionalization of activated carbons by HNO3 treatment: Influence of phosphorus surface groups. Carbon 101: 409-419.

Toloza, C.A.T., Khan, S., Silva, R.L.D., Romani, E.C., Larrude, D.G., Louro, S.R.W., Freire Júnior, F.L. & Aucelio, R.Q. 2017. Photoluminescence suppression effect caused by histamine on amino-functionalized graphene quantum dots with the mediation of Fe3+, Cu2+, Eu3+: Application in the analysis of spoiled tuna fish. Microchemical Journal 133: 448-459.

Wang, B., Cai, H., Waterhouse, G.I.N., Qu, X., Yang, B. & Lu, S. 2022. Carbon dots in bioimaging, biosensing and therapeutics: A comprehensive review. Small Science 2(6): 2200012.

Wang, F., Hao, Q., Zhang, Y., Xu, Y. & Lei, W. 2016. Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchimica Acta 183: 273-279.

Wang, Y. & Hu, A. 2014. Carbon quantum dots: Synthesis, properties and applications. Journal of Materials Chemistry C 2(34): 6921-6939.

Xu, Q., Liu, Y., Gao, C., Wei, J., Zhou, H., Chen, Y., Dong, C., Sreeprasad, T.S., Li, N. & Xia, Z. 2015. Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. Journal of Materials Chemistry C 3(38): 9885-9893.

Yadav, S., Nair, S.S., Sai, V.V.R. & Satija, J. 2019. Nanomaterials based optical and electrochemical sensing of histamine: Progress and perspectives. Food Research International 119: 99-109.

Zang, Z., Zeng, X., Wang, M., Hu, W., Liu, C. & Tang, X. 2017. Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging. Sensors and Actuators B: Chemical 252: 1179-1186.

Zhang, D., Wang, Y., Xie, J., Geng, W. & Liu, H. 2020. Ionic-liquid-stabilized fluorescent probe based on S-doped carbon dot-embedded covalent-organic frameworks for determination of histamine. Microchimica Acta 187: 1-9.

Zhou, M., Zhou, Z., Gong, A., Zhang, Y. & Li, Q. 2015. Synthesis of highly photoluminescent carbon dots via citric acid and Tris for iron (III) ions sensors and bioimaging. Talanta 143: 107-113.

Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y. & Zhou, X. 2017. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchimica Acta 184: 1899-1914.

Zuo, P., Lu, X., Sun, Z., Guo, Y. & He, H. 2016. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta 183: 519-542.

 

*Corresponding author; email: m.zakki.fahmi@fst.unair.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous